The Ahlfors Iteration for Conformal Mapping A
نویسندگان
چکیده
of the Dissertation The Ahlfors Iteration for Conformal Mapping by Christopher Michael Green Doctor of Philosophy in Mathematics Stony Brook University 2011 The Riemann Mapping Theorem states that for any proper, simply connected planar domain there exists a conformal mapping from the disk onto the domain. But can this map be explicitly described? For general domains, there is no obvious answer. However, if the domain is the interior of a simple polygon, a convenient formula for the Riemann map was discovered independently by Schwarz and Christoffel. In this dissertation, we present a local quadratically convergent algorithm, the Ahlfors Iteration, based on the theory of quasiconformal maps in the plane, to compute the Schwarz-Christoffel mapping. This algorithm will also apply to a larger collection of simply connected Riemann surfaces. The Ahlfors Iteration improves upon current algorithms that compute the Schwarz-Christoffel map, in that, it is proven to converge, has a simple iterative form, and is easy to implement.
منابع مشابه
Conformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملAhlfors Maps, the Double of a Domain, and Complexity in Potential Theory and Conformal Mapping
We prove that the Bergman kernel function associated to a finitely connected planar domain can be expressed as a rational combination of two independent Ahlfors maps associated to the domain plus the derivative of one of the maps. Similar results are shown to hold for the Szegő and Poisson kernels and other objects of potential theory. These results generalize routinely to the case of a relativ...
متن کاملOptimization of Conformal Mapping Functions used in Developing Closed-Form Solutions for Underground Structures with Conventional cross Sections
Elastic solutions applicable to single underground openings usually suffer from geometry related simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and others with arched roof and floor are examples of the later category (one symmetry axis). In the present...
متن کاملConical Conformal Antenna Design using the CPM Method for MIMO Systems
Abstract- In this article, the design of conformal antennas has been discussed using the characteristic modes (CM) method. For this purpose, the vector wave function(VWF) has been utilized to achieve a two-dimensional mapping of the conformal antenna. In designing and analyzing of cone-shaped antennas applicable for multi-input multi-output (MIMO) systems, the most important goal is to achieve ...
متن کاملOn the Conformal Gauge of a Compact Metric Space
In this article we study the Ahlfors regular conformal gauge of a compact metric space (X, d), and its conformal dimension dimAR(X, d). Using a sequence of finite coverings of (X, d), we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gaug...
متن کامل